R の vars パッケージや dse パッケージを使って、多変量時系列を VAR モデルや状態空間モデルにフィッティングさせてみました。
番町のITおじさんが書く、ITエンジニアの教養ブログです。様々なプログラミング言語やソフトウェア工学についての知識、ITやIT業界の歴史、動向などを取り上げます。
2020/05/28
R - 実践編 3 時系列の単位根検定
R で実際に時系列データの単位根検定をしてみましょう。Phillips-Perron 検定と Augmented Dickey-Fuller 検定が使用できます。
2020/05/23
時系列分析 (5) - 状態空間モデル
AR, MA, ARMA, ARIMA, VAR, VARMA, VARIMA, ... などの時系列モデルは、観測値を直接モデル化するものでした。今回紹介する状態空間モデル (State-space model) の場合は、状態の時系列変化と、その状態から観測される値とに分けてモデル化する手法です。AR モデル、ARMA モデルなども状態空間表現を取ることができますし、状態空間モデルではより多様なシステムが記述できます。例えば、時変的な回帰係数を持つ回帰モデルなどが表現できます。
また、状態空間モデルではカルマンフィルタという強力なアルゴリズムによって、条件付き同時分布が効率よく計算できるため、ARMA のパラメータ推定を行うに際して、ARMA の状態空間表現に対してのカルマンフィルタによる推定が良く行われています。
また、状態空間モデルではカルマンフィルタという強力なアルゴリズムによって、条件付き同時分布が効率よく計算できるため、ARMA のパラメータ推定を行うに際して、ARMA の状態空間表現に対してのカルマンフィルタによる推定が良く行われています。
時系列分析 (4) - 多変量の時系列分析
複数の変量が相互作用を持って発展していく形の時系列は珍しくありません。こういったデータは、各変量を個別にモデル化しようとしてもうまくいきません。このような場合は、ベクトル自己回帰 (Vector Autoregressive / VAR) モデルが有効な場合があります。VAR モデルは、AR モデルを多変量に拡張したものです。今回は VAR モデルについて簡単に触れたいと思います。
2020/05/22
2020/05/21
時系列分析 (2) - 自己相関のモデル
ある時系列データが、自己相関検定を経て自己相関があると分かったら、その自己相関のモデル化に取り組む価値があります。自己相関のモデル化にあたっては、移動平均過程 (MA過程) と自己回帰過程 (AR過程) という2つの過程が基本となります。この2つの過程とその組み合わせである自己回帰移動平均過程 (ARMA過程) について見ていきましょう。
2020/05/20
時系列分析 (1) - 時系列の性質の把握
為替レートなどの価格時系列データの分析をよく行うので、統計学的に分析する場合の一般論について書いてみました。
理系大学の学部生が使う教科書に書いてあるレベルより少し丁寧に説明しているつもりです。
理系大学の学部生が使う教科書に書いてあるレベルより少し丁寧に説明しているつもりです。
登録:
投稿
(
Atom
)